
	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	
of	Information	Leakage		

(Order	Email,	Booking	Number,	Purchase	Detail	–	Trip	duration,	
Departure	Month,	and	Other)	

	

	

	

	

	

	

	

	

	

	

	

	

Apr	17th,	2018	

@YoKoAcc	(yk@firstsight.me)	

[English	Version]	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	2	
	

Revision	Detail	

	

Version	 Date	 Detail	

0.1	 Apr	17th,	2018	 -	

	

Note:	

The	original	report	of	this	issue	(sent	few	months	ago)	was	modified	to	added	some	detail	such	as	the	

application	flow,	flow	of	attack,	and	also	response	from	the	program	owner.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	3	
	

Table	of	Contents

Revision	Detail	..	2	

Table	of	Contents	...	3	

Table	of	Figures	..	3	

I.	 PRE-INTRODUCTION	..	4	

II.	 INTRODUCTION	...	4	

2.1.	Flow	of	the	Application	..	4	

2.2.	Few	words	about	Insecure	Direct	Object	Reference	..	6	

III.	SUMMARY	OF	ISSUE	..	6	

IV.	PROOF	OF	CONCEPT	..	6	

V.	 RESPONSE	FROM	THE	PROGRAM’S	OWNER	...	9	

VI.	REFERENCES	..	9	

Table	of	Figures	

Figure	1	Sample	Request	of	sent	“Payment_id”	..	7	

Figure	2	Sample	Response	-	Enumerating	Other	Users'	Booked	..	7	

Figure	3	Enumerate	other	user	Data	Automatically	...	8	

Figure	4	Response	from	the	Program	Owner	...	9	

	
	
	
	
	
	
	
	
	
	
	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	4	
	

I. PRE-INTRODUCTION	

Few	months	ago,	I	got	an	invitation	to	private	bug	bounty	program	at	Hackerone.	To	be	honest,	when	

I	see	that	the	program	has	been	launch	since	September	2015,	I	really	lost	the	interest	to	participate.	

But	when	I	see	the	resolved	report	are	only	29,	then	I	think:	“Why	we	not	give	it	a	try	for	a	while?”	

In	short,	after	few	hours	of	testing,	finally	I	found	2	subdomain	takeover	issue	and	one	of	the	good	

one	is	finally	found	an	IDOR	that	could	result	of	Personal	Data	Leak.	And	yes,	the	detailed	about	IDOR	

could	be	seen	at	this	simple	report.	

	

II. INTRODUCTION	

2.1. Flow	of	the	Application	

Just	like	a	common	site	that	has	an	online	shopping	feature	for	their	customer,	this	private	program	

also	provides	the	various	payment	method	that	could	be	choose	by	customer	to	pay	their	bill.	To	be	

honest,	since	its	already	around	3	months	from	the	issue	has	been	closed,	then	we	didn’t	remember	

exactly	the	list	of	payment	choice	except	accepted	the	various	international	credit	card.	

When	we	 learn	how	the	application	works,	 the	 flow	 to	pay	 the	bill	 itself	need	several	 steps	 to	be	

conduct	by	the	customer	before	the	payment	was	proceed	 into	the	3rd	party	service.	Here	are	the	

general	flows	that	we	learn:	

	

As	could	be	seen	from	the	flow	above:	

2.1.1. User	should	choose	the	destination	that	they	would	like	to	choose.	After	the	choice	is	decided	

and	submitted,	then	the	application	will	generate	the	temporary	URL	that	saving	our	session	

that	contains	our	choice	 (its	normal	and	common	at	 the	shopping	application)	and	send	the	

POST	Request	that	contains	our	personal	data	(that	saved	at	our	profile).	

POST	/booking2/numbers_here/save_session/unique_sessions_over_here	

HOST:	target.com	

POST	Value:	the	detail	that	has	been	saved	into	our	profile.	
	

1	- Choosing	the	
Destination	(for	
example,	Hotel)

2	- Fill	the	
Personal	Detail	
and	Choose	the	

Payment	
Method

3	- Proceed	the	
Payment	to	the	

3rd	Party	
Service	

4	- Application	
will	response	
with	the	
Booking	

Number	even	
the	Payment	
was	Failed

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	5	
	

2.1.2. In	 this	part,	 the	user	should	 fill	 the	personal	detail	 including	choosing	the	payment	method.	

When	the	payment	detail	has	been	submitted,	then	the	application	will	changes	the	URL	from	

“save_session”	into	“order”	request.	

POST	/booking2/numbers_here/order/unique_sessions_over_here	

HOST:	target.com	

.	

POST	Value:	the	detail	that	has	been	saved	into	our	profile	including	the	chosen	payment	method.	
	

	

2.1.3. When	the	POST	request	has	check	correctly	by	the	server	(in	other	words,	there	is	no	needed	

data	 anymore),	 then	 the	 application	 will	 automatically	 send	 the	 request	 to	 the	 function	

(including	the	unique	hash	and	payment	numbers)	that	proceed	the	payment	to	communicate	

with	the	3rd	party	service	(we	guess	it	because	the	name	of	the	function	is	very	similar	with	the	

company	 that	 provides	 this	 kind	 of	 service).	 To	 censored	 the	 name,	 then	 we	 will	 name	 it	

“xyzabc”.	

GET	/xyzabc/unique_hash_over_here/payment_numbers_over_here/payment/	

HOST:	target.com	
	

	

2.1.4. After	the	unique	hash	and	payment	numbers	are	generated	at	the	URL,	then	the	application	

send	this	request	to	the	POST	Method	to	checkout	the	payment	process	to	the	3rd	party	service.	

Here	are	a	sample	requests	that	sent	by	the	application:	

POST	/xyzabc/checkout/	

HOST:	target.com	

.	

.	

csrfmiddlewaretoken=random_value_over_here&payment_id=means_payment_numbers&pay

ment_product=card&card=unique_hash_of_the_card	

	

2.1.5. It	doesn’t	matter	if	the	detail	is	correct	or	not,	the	application	will	automatically	generate	the	

booking	number.	In	this	case,	if	the	payment	was	failed,	then	the	booking	number	(transaction	

ID)	will	contain	the	failed	payment	process	information	at	the	page.	

GET	/order/X-12312312/instalment/resolve/?NTO=random_character_here	

HOST:	target.com	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	6	
	

After	 few	analysis,	 then	we	 found	out	 if	 there	 is	 a	 problem	at	 the	point	 2.1.4,	which	 is	when	 the	

application	was	try	to	proceed	the	payment	by	send	the	“payment_id”	parameter	to	the	server.	In	

other	words,	by	manipulating	this	parameter,	then	we	could	enumerate	the	success	or	failed	booking	

that	made	by	the	other	user.	

	

2.2. Few	words	about	Insecure	Direct	Object	Reference	

This	kind	of	vulnerability	could	allow	the	Attacker	to	gain	the	access	into	some	purposes	without	the	

need	to	has	a	valid	authorization.	Basically,	 this	execution	 is	conduct	by	manipulate	a	value	of	 the	

parameter	that	exist	at	the	application.	In	its	"implementation",	the	purposes	of	this	execution	are	to	

see	 or	 changing	 the	 (sensitive)	 information	 that	 just	 could	 be	 access	 by	 the	 user	 that	 has	 a	 valid	

authorization	into	that	information.	

In	 this	 situation,	 the	 problem	 related	 IDOR	 appears	 at	 the	 “payment_id”	 parameter	 because	 the	

application	didn’t	validate	the	session	yet	in	the	checkout	request.	

	

III. SUMMARY	OF	ISSUE	

As	 described	 above,	 the	 site	 didn’t	 validate	 the	 session	 yet	 in	 the	 “payment_id”	 request.	 This	

vulnerability	could	allow	the	Attacker	to	get	the	failed	or	succeed	booking	that	created	by	other	user	

at	this	site	without	the	knowledge	of	their	account	and	password.	

As	an	information,	the	best	part	of	this	issue	is	we	could	enumerate	those	data	automatically	by	brute	

forcing	the	“payment_id”	value.	

	

IV. PROOF	OF	CONCEPT	

Previously,	 I	 try	to	enumerate	directly	the	Booking	Number	(Transaction	ID	that	explained	at	point	

2.1.5)	since	the	number	looks	so	easy	to	be	guessed.	But	the	result	of	this	is	activity	is	failed	(doesn’t	

show	anything	even	at	the	browser	or	by	viewing	the	frond-end	source).	

But,	the	good	result	has	appeared	when	we	try	to	change	the	“payment_id”	parameter.	By	changing	

this	parameter,	 then	automatically	 the	system	will	generate	the	other	user’s	booking	number	that	

could	be	used	to	enumerate	the	data	that	has	the	relation	with	those	booking	number.	But	please	

kindly	note,	this	data	can’t	be	seen	without	viewing	the	source.	

For	clearing	the	explanation,	here	is	the	simple	step	that	should	be	conduct:	For	example,	if	we	change	

into	another	ID	(at	this	case,	we	change	from	4055809	to	4055311),	we	will	get	redirected	into	another	

user	 Booking	 Number	 (B-213xxxxx).	 At	 this	 part,	 we	 will	 get	 the	 information	 that	 someone	 with	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	7	
	

cencored@cencored.com	as	their	email	address	was	ordered	the	Hotel	with	1	day	trip	duration.	We	

also	could	get	the	other	information	such	as	total	transaction,	departure	month,	group	size,	location,	

and	other.	

Here	is	the	sample	request	of	sent	“payment_id”	parameter:	

	

Figure	1	Sample	Request	of	sent	“Payment_id”	
	

And	here	is	the	sample	response	that	we	got	after	changing	the	payment	ID	from	4055809	to	4055311:	

	

Figure	2	Sample	Response	-	Enumerating	Other	Users'	Booked	
	

And	yes,	one	of	the	best	part,	we	also	could	enumerate	this	data	automatically.	By	using	the	intruder	

mode	and	setting	the	redirect	to	always,	then	we	could	enumerate	all	of	other	user’s	data.	

	

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	8	
	

	
Figure	3	Enumerate	other	user	Data	Automatically	

	

And	for	the	recap,	here	is	the	flow	of	Attack	related	this	issue:	

	

	

1	- Choosing	the	
Destination	(for	example	

Hotel)

2	- Fill	the	Personal	
Detail	and	Choose	the	
Payment	Method

3	- Proceed	the	Payment	
to	the	3rd	party	service	

"xyzabc"
(with	unique	hash	and	

Payment	ID)

4a	- POST	Request	to	
Checkout	into	3rd	Party	

Service
(Change	the	Payment	ID)

4b	- The	Payment	ID	
parameter	(from	4a	
flow)	could	be	change	
automatically	(brute	the	

ID)

5	- The	application	will	
generate	the	Booking	
Number	(called	as	
Transaction	ID)

6	- View	the	Response	
from	this	page	and	we	
will	see	the	other	user	

information

7	- Attacker	get	the	data

Finish

IDOR	(at	Private	Bug	Bounty	Program)	that	could	Result	of	Information	Leakage	|	page	|	9	
	

V. RESPONSE	FROM	THE	PROGRAM’S	OWNER	

Around	Four	hours	 after	 they	 received	 the	 report	 (probably	 read	 the	 report),	 they	 fixed	 the	 issue	

completely	and	send	the	reward	around	50	minutes	after	the	fix	has	been	verified.	

	

Figure	4	Response	from	the	Program	Owner	

To	be	honest,	this	one	really	break	the	records	that	I	ever	met.	

	

VI. REFERENCES	

• OTG-AUTHZ-004	-	Testing	for	Insecure	Direct	Object	References	

• CWE-932:	Insecure	Direct	Object	References		

